Especialista en Medicina de Familia.
Entrenador de fútbol.
Centro de Salud de Alquerías,
C/ R. Fernández Miñarro, Nº 1, Alquerías, 30580, Murcia, Spain.
paco.belda@gmail.com
COPYRIGHT. Todos los derechos reservados por Francisco Belda Maruenda.
RESUMEN
Los errores al juzgar un fuera de juego en el fútbol son muy frecuentes1,2. En los últimos años, varios artículos científicos han intentado explicar el motivo de los errores humanos (1,2,3,4,5,6,7). Cuando un árbitro o un árbitro asistente juzga mal un fuera de juego siempre se achaca a un error humano. Error humano es realizar mal una acción para la cual se está capacitado fisiológicamente. La hipótesis a estudiar es si podemos atribuir los errores al juzgar un fuera de juego a errores humanos o a que la fisiología humana y los medios tecnológicos están incapacitados para detectar una posición de fuera de juego. La regla del fuera de juego (8) exige ser aplicada en tiempo real, en cero milisegundos, justo en el momento del pase del balón, nunca 1 milisegundo ni 1 millonésima de segundo después. Aquí muestro que el ser humano y los medios tecnológicos están incapacitados fisiológica y técnicamente para detectar un fuera de juego en tiempo real, en cero milisegundos. Los resultados de este trabajo muestran que cuando se produce el pase del balón, el ojo (9,10) y el cerebro humano (11) y los medios tecnológicos (12) necesitan tiempo para localizar a los cuatro jugadores (13) (como mínimo) que intervienen en una jugada de fuera de juego. Cuando esos jugadores son localizados ha pasado tiempo y nunca están en la posición original, cuando se realizó el pase del balón. Los jugadores de fútbol tienen velocidad y aceleración para cambiar su posición geográfica en el terreno de juego cuando se realiza el pase del balón. Por ello, no podemos atribuir al error humano cuando se juzga mal un fuera de juego. El ser humano y los medios tecnológicos nunca podrán detectar un fuera de juego en tiempo real. La clave del fuera de juego es un problema físico: el tiempo. La IFAB debe abolir la regla del fuera de juego.
INTRODUCCIÓN
La regla del fuera de juego en el fútbol es una de las más polémicas durante un partido. Los errores al juzgar mal un fuera de juego son muy frecuentes (1,2) y siempre se atribuyen al error humano. En los últimos años varios artículos (1,2,3,4,5,6,7) científicos han contribuido de manera muy importante a comprender por qué se producen esos errores. El error humano se ha atribuido al error óptico basado en un ángulo de visión incorrecto (1), al efecto flash-lag (3) y a los movimientos oculares (13). Error humano es aquella acción que realiza equivocadamente un ser humano, pero que está capacitado fisiológicamente para realizarla bien. El problema radica en descubrir si se trata de un error humano o no.
Sin embargo la resolución de este problema es muy simple. Lo más acertado es plantear la hipótesis de si el problema tiene un origen fisiológico en el ojo y el cerebro humano o se trata de un simple problema de física. No hay que olvidar que el resultado de los partidos de fútbol puede variar por juzgar mal un fuera de juego. Y esto último tiene una repercusión económica valorada en cientos de millones de euros: quinielas, publicidad, valoración económica de los jugadores y de los equipos de fútbol, etc.
MÉTODOS
El punto de partida más importante es comprender con exactitud qué exige la regla del fuera de juego (8). Esta regla requiere la aplicación del fuera de juego exactamente cuando se produce el pase del balón, en cero milisegundos. Nunca 1 milésima de segundo después ni 1 millonésima de segundo después. Esta regla exige conocer la posición geográfica exacta que ocupan los jugadores que pueden intervenir en una posición de fuera de juego justo en el momento del pase del balón. Además hay que decidir si el jugador al que va dirigido el pase del balón participa de forma activa en la jugada. Los elementos en una posición de fuera de juego son el balón (origen de la línea geográfica horizontal que delimita el fuera de juego ya que detrás de esta línea nunca hay fuera de juego) y un mínimo de 4 jugadores (2 jugadores del equipo atacante y los 2 últimos jugadores del equipo que defiende), aunque en la mayoría de las jugadas intervienen más jugadores. Si el ojo y el cerebro humano y los medios tecnológicos no pueden detectar una posición de fuera de juego en 0 milisegundos es obvio deducir que están incapacitados fisiológica y técnicamente para poder detectar un fuera de juego en tiempo real porque los jugadores tienen velocidad y aceleración para cambiar de posición geográfica en el campo de fútbol y no ser detectados exactamente cuando se produce el pase del balón.
RESULTADOS
Cuando se realiza el pase del balón, la respuesta fisiológica del cuerpo humano es la siguiente: Los movimientos de fijación ocular (10,14) (movimientos microsacádicos, trémor y drifts) detectan la percepción visual del momento exacto del pase del balón y ésta es la señal que desencadena todo el proceso oculoneuronal para detectar si hay algún jugador en fuera de juego (pero los movimientos de fijación ocular necesitan tiempo para realizarse). Esta señal es transmitida al cerebro a través del nervio óptico (también necesita tiempo). El cerebro recibe esa información (10,14,15), la almacena (11), la procesa (10,16,17) y emite una respuesta para preparar al sistema oculomotor a realizar los movimientos oculares pertinentes para detectar a todos los jugadores que participen en la jugada de fuera de juego (este proceso necesita tiempo). La respuesta del cerebro vuelve al ojo a través de los nervios oculomotores (necesita tiempo). Se realizan varios movimientos sacádicos (13) y movimientos de fijación ocular (10) para localizar la posición geográfica exacta de todos los jugadores que pudieran intervenir en la jugada de fuera de juego (éste es el proceso que más tiempo consume). Esta información del campo visual es remitida de nuevo al cerebro a través del nervio óptico (necesita tiempo). Con esa información el cerebro decide si hay un jugador o no en fuera de juego (necesita tiempo) y emite una señal motora (Árbitro asistente: levantar la bandera; Árbitro: soplar el silbato) en el caso afirmativo de existir un fuera de juego (este proceso también precisa tiempo).
Estos movimientos oculares son extremadamente breves (16), así como el procesamiento de la información por parte del cerebro. La duración de la fijación ocular (16) es de 30 a 40 milisegundos. La latencia sacádica (9) precisa de 80 a 135 milisegundos y la duración del movimiento sacádico (18,19) de 30 a 100 milisegundos.
Algunos árbitros asistentes utilizan una técnica que les permita ahorrar tiempo. Intentan tener en su campo visual a los jugadores que pudieran intervenir en la jugada de fuera de juego y sólo están pendientes del sonido del balón cuando se realiza el pase del balón. Pero la transmisión de la señal sonora también necesita tiempo.
DISCUSIÓN
Cuando se produce el pase del balón, los estudios anteriores han mostrado que los errores más frecuentes se producen cuando los jugadores (atacante y defensor) corren en direcciones opuestas (7), el defensa corre hacia el centro del campo y el atacante hacia el campo contrario. Esto es así porque los jugadores de fútbol tienen velocidad y aceleración para cambiar sus posiciones relativas en el campo de fútbol. El tiempo que tarda el ojo y el cerebro humano es aprovechado por los jugadores para intercambiar sus posiciones relativas en el campo de fútbol y no ser detectados en la posición geográfica exacta que ocupaban cuando se produjo el pase del balón.
Un proceso similar ocurre con los medios tecnológicos. En el momento justo del pase del balón cualquier medio tecnológico tiene que emitir una señal (láser, eléctrica, electrónica o radiofrecuencia) que debe ser dirigida a la CPU de un ordenador (12) (Unidad central de procesamiento). Pero este proceso aunque sea una millonésima de segundo precisa tiemp0 (12). Para economizar tiempo, otros dispositivos podrían estar enviando al mismo tiempo una señal a la CPU de la localización geográfica exacta de los diferentes jugadores que pudieran intervenir en la posición de fuera de juego. Los medios tecnológicos podrían simultanear esta señal, sin embargo el ser humano no está capacitado fisiológicamente para realizar esa función. La CPU recibe esa información, la almacena, la procesa, la interpreta y emite una señal que puede ser acústica o visual en el caso de existir fuera de juego (pero este proceso también necesita tiempo).
CONCLUSIONES
El ojo y el cerebro humano y los medios tecnológicos no pueden detectar una posición de fuera de juego en cero milisegundos, en tiempo real. La clave del fuera de juego es un problema físico: el tiempo.
Estamos ante el error más multitudinario de la historia de la humanidad. Desde el siglo XIX (la regla del fuera de juego fue introducida en 1866) miles de millones de personas han creído ver y todavía hoy creen que pueden ver y juzgar un fuera de juego en tiempo real, en cero milisegundos. La IFAB tiene un grave problema, la IFAB debe eliminar la regla del fuera de juego.
BIBLIOGRAFÍA
1. Oudejans RR, Verheijen R, Bakker FC, Gerrits JC, Steinbruckner M, Beek PJ. Errors in judging 'offside' in football. Nature. 2000 Mar 2;404(6773):33.
2. Helsen W, Bilis B, Weston M. Errors in judging "offside" in association football: test of the optical error versus the perceptual flash-lag hypothesis. J Sports Sci. 2006 May;24(5):521-8.
3. Baldo MV, Ranvaud RD, Morya E. Flag errors in football games: the flash-lag effect brought to real life.Perception. 2002;31(10):1205-10.
4. Oudejans, R.R.D., Bakker, F.C., Beek, P.J. (2007). Helsen, Gillis and Weston (2006) err in testing the optical error hypothesis. Journal of Sports Sciences, 25, 987-990.
5. Oudejans, R.R.D., Bakker, F.C., Verheijen, R., Steinbrückner, M., Gerrits, J.C., Beek, P.J. (2005). How position and motion of expert assistant referees in soccer relate to the quality of their offside judgements during actual match play. International Journal of Sport Psychology, 36, 3-21.
6. Helsen Werner; Gilis Bart; Weston Matthew. Helsen, Gilis and Weston (2006) do not err in questioning the optical error hypothesis as the only major account for explaining offside decision-making errors. Journal of sports sciences 2007; 25(9): 991-4.
7. Gilis Bart; Helsen Werner; Catteeuw Peter; Van Roie Evelien; Wagemans Johan. Interpretation and application of the offside law by expert assistant referees: perception of spatial positions in complex dynamic events on and off the field. Journal of Sport Sciences 2009; 27(6):551-63.
8. International Football Association Board. Laws of the game 2009/2010. Zurich: Fédération Internationale de Football Association (FIFA). http://www.fifa.com/mm/document/affederation/federation/81/42/36/lawsofthegameen.pdf
9. Fischer B, Biscaldi M, Gezeck S. On the development of voluntary and reflexive components in saccade generation. Brain Research, 1997; 754:285-297.
10. Martinez-Conde, S., Macknik, S.L., Hubel, D.H. The role of fixational eye movements in visual perception. Nature reviews Neuroscience, 2004 (5):229-240.
11. Caspi A, Beutter BR, Eckstein MP. The time course of visual information accrual guiding eye movement decisions. Proc Natl Acad Sci U S A. 2004 Aug 31; 101(35):13086-90.
12. K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The Multicluster architecture: reducing cycle time through partitioning. In Proc. 30th Int’l Symp. on Microarchitecture, 1997.
13. Belda Maruenda, F. Can the human eye detect an offside position during a football match? British Medical Journal. 2004, December 18; 329 (7480): 1470 -1472.
14. Horwitz GD, and Newsome WT. Separate signals for target selection and movement specification in the superior colliculus. Science. 1999; 284: 1158-1161.
15. Dorris MC, and Munoz DP. Saccadic probability influences motor preparation signals and time to saccadic initiation. J Neuroscience. 1998; 18: 7015-7026.
16. John M. Findlay, Valerie Brown, Iain D. Gilchrist. Saccade target selection in visual search: the effect of information from the previous fixation. Vision Research, 2001; 41: 87–95.
17. Becker, W. & Jurgens, R. An analysis of the saccadic system by means of double step stimuli. Vision Res. 1979; 19(9):967-83.
18. Brockmole, J. R., Carlson, L. A., & Irwin, D. E. Inhibition of attended processing during saccadic eye movements. Perception & Psychophysics. 2002; 64, 867-881.
19. Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 1998; 124: 372- 422.
1 comentario:
Buena expedición y este post me ha ayudado mucho en mi asignacion de la universidad. Agradecimiento usted como su información.
Publicar un comentario